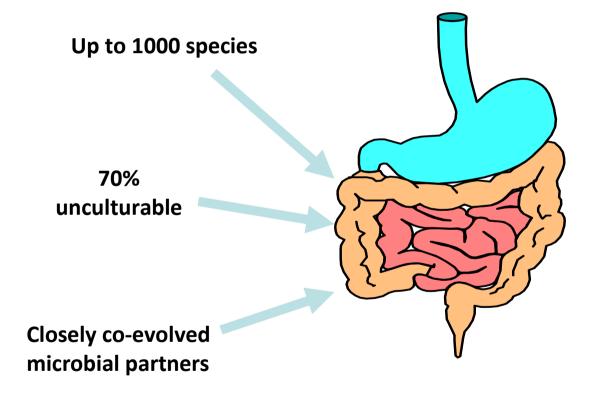
# Dietary modulation of the human gut microbiota – taming the beast within!

Kieran Tuohy Fondazione Edmund Mach, Italy




Research & Innovation Centre



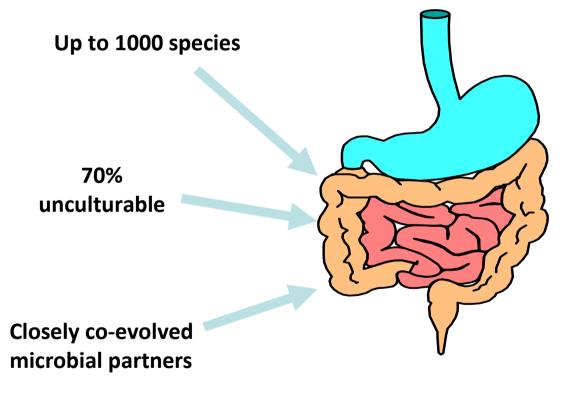


## The human gut microbiota





#### Interactions with;


• Diet

• Drugs

- •Immune system
- •Gut physiology
- •Bile acids/liver
- •Systemic metabolism
- •Adipose tissue
- •Brain development & function

### The human gut microbiota





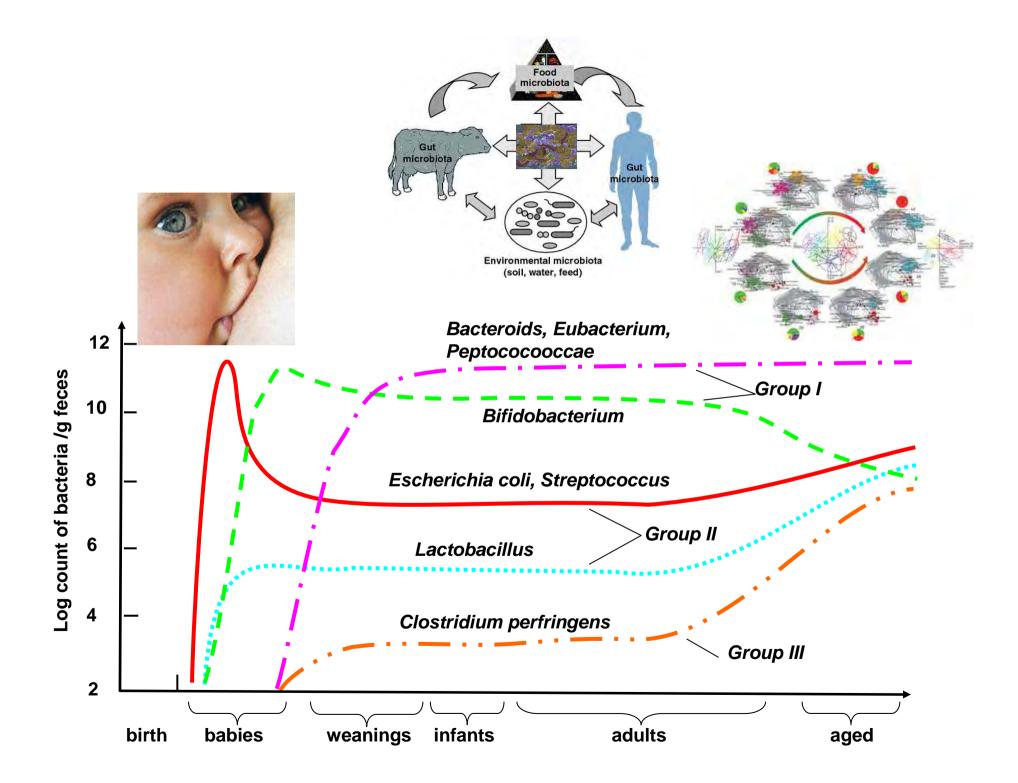
#### Interactions with;

• Diet

• Drugs

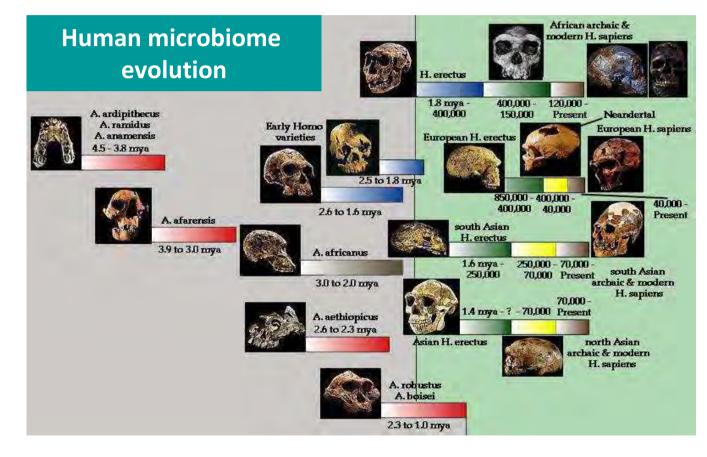
•Immune system

•Gut physiology


•Bile acids/liver

•Systemic metabolism

•Adipose tissue


•Brain development & function

Gut microbiota and essential organ within the human system – we have become an ecosystem



## Human diet shaped our closely coevolved human:microbe ecosystem





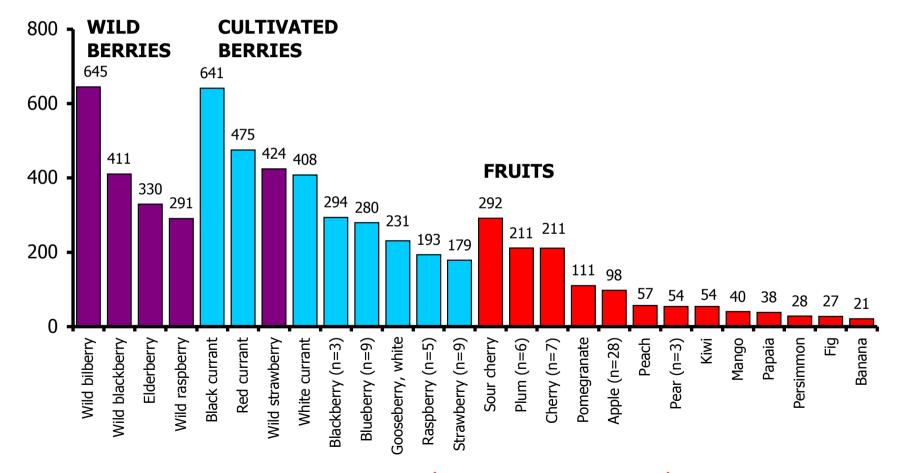
#### **Dietary evolution**

•Neolithic times: ~10,000 yrs BP (birth of agriculture)

•Agricultural/Industrial revolutions: Late 18th and early 19th century

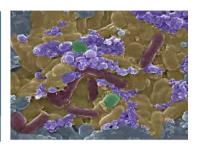
•Recent changes: Over the last 50 yrs (Westernstyle diet)

## Estimated daily fiber intake in Palaeolithic /Traditional diets and Modern diet




| Dietary pattern                                     | Fiber content |
|-----------------------------------------------------|---------------|
| Palaeolithic diet first reported in 1985 (Eaton SB) | 45.7g         |
| Palaeolithic diet modified in 1990 (Eaton SB)       | >100g         |
| Palaeolithic diet reported in 1996/1997 (Eaton SB)  | 104g          |
| Rural Chinese diet                                  | 77g           |
| Rural African diet                                  | 120g          |
| Current US diet                                     | 10-20g        |
| Recommended fiber content in US                     | 25-38g        |
| Current UK diet                                     | 12g           |
| Recommended fiber content in UK                     | 18g           |

(Tuohy et al. Current Pharmaceutical Design, 2009)


## Total polyphenols (catechin equivalents, mg/100 g)





Redrawn from: Mattivi F., Dietas Mediterráneas: La evidencia científica, 2004, 99-111

Gut microbiota differs between children following Western-style diet in Italy and children in rural Africa following traditional diet.



# PNAS

## Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa

Carlotta De Filippo<sup>a</sup>, Duccio Cavalieri<sup>a</sup>, Monica Di Paola<sup>b</sup>, Matteo Ramazzotti<sup>c</sup>, Jean Baptiste Poullet<sup>d</sup>, Sebastien Massart<sup>d</sup>, Silvia Collini<sup>b</sup>, Giuseppe Pieraccini<sup>e</sup>, and Paolo Lionetti<sup>b,1</sup>

<sup>a</sup>Department of Preclinical and Clinical Pharmacology, University of Florence, 50139 Firenze, Italy; <sup>b</sup>Department of Pediatrics, Meyer Children Hospital, University of Florence, 50139 Firenze, Italy; <sup>c</sup>Department of Biochemical Sciences, University of Florence, 50134 Firenze, Italy; <sup>d</sup>DNA Vision Agrifood S.A., B-4000 Liège, Belgium; and <sup>e</sup>Centro Interdipartimentale di Spettrometria di Massa, University of Florence, 50139 Firenze, Italy

De Filippo et al., PNAS (2010)

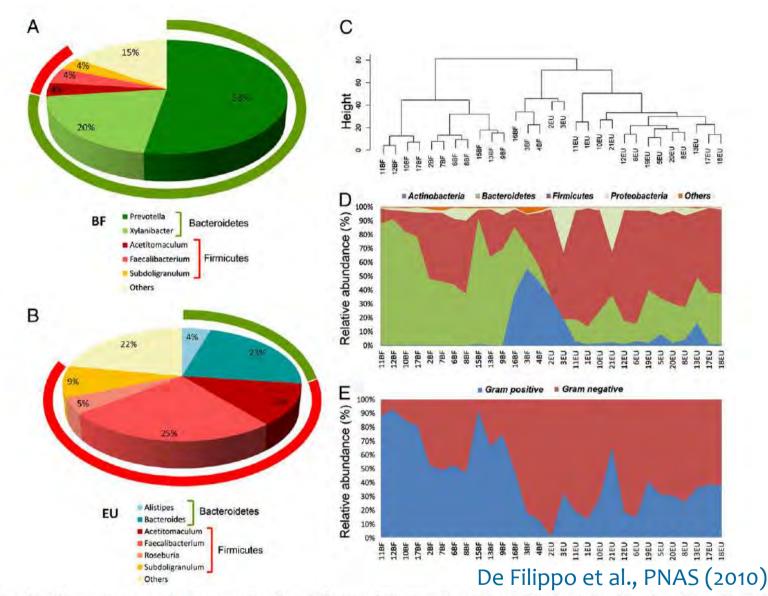
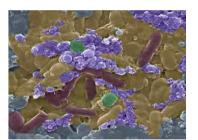




Fig. 2. 16S rRNA gene surveys reveal a clear separation of two children populations investigated. (A and B) Pie charts of median values of bacterial genera present in fecal samples of BF and EU children (>3%) found by RDP classifier v. 2.1. Rings represent corresponding phylum (Bacteroidetes in green and Firmicutes in red) for each of the most frequently represented genera. (C) Dendrogram obtained with complete linkage hierarchical clustering of the samples from BF and EU populations based on their genera. The subcluster located in the middle of the tree contains samples taken from the three youngest (1–2 y old) children of the BF group (16BF, 3BF, and 4BF) and two 1-y-old children of the EU group (2EU and 3EU). (D) Relative abundances (percentage of sequences) of the four most abundant bacterial phyla in each individual among the BF and EU children. Blue area in middle shows abundance of Actinobacteria, mainly represented by *Bifidobacterium* genus, in the five youngest EU and BF children. (*E*) Relative abundance (percentage of sequences) of Gram-negative and Gram-positive bacteria in each individual. Different distributions of Gram-negative and Gram-positive in the BF and EU populations reflect differences in the two most represented phyla, Bacteroidetes and Firmicutes.

# Aberrant gut microbiota associated with Western-style diet



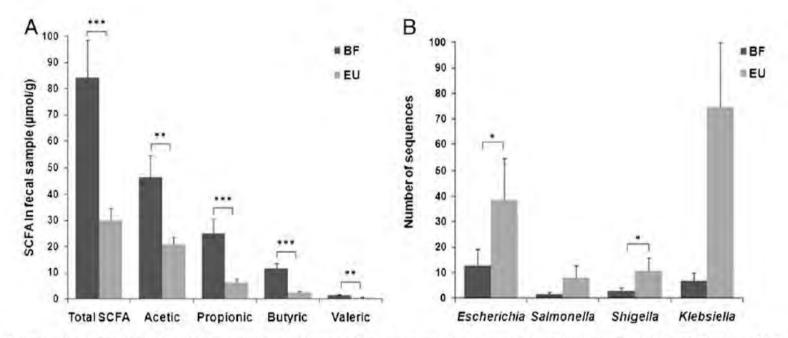
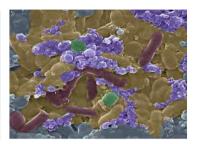




Fig. 3. SCFA-producing bacteria could help to prevent establishment of some potentially pathogenic intestinal bacteria. (A) Quantification of SCFAs in fecal samples from BF and EU populations by SPME-GC-MS. (B) Number of sequences relative to principal *Enterobacteriaceae* genera, in BF and EU children microbiota. Mean values ( $\pm$ SEM) are plotted. Asterisks indicate significant differences (one-tailed Student t test of all data points: \*P < 0.05; \*\*P ≤ 0.01; \*\*\*P ≤ 0.001).

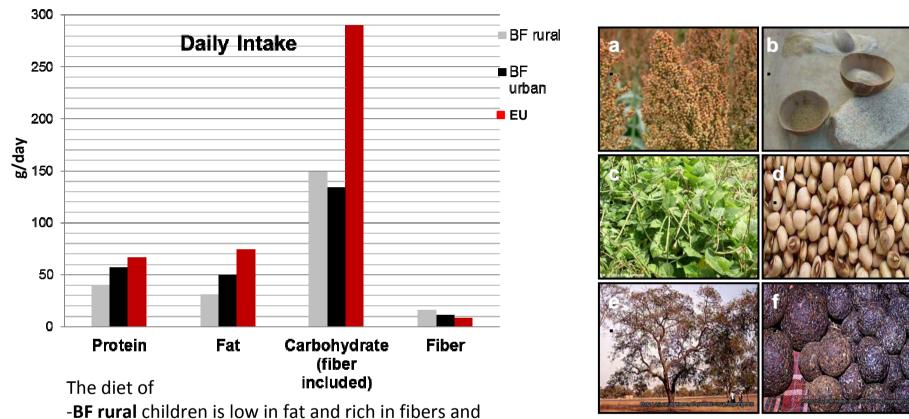
SCFA about 3-4 fold higher in African children than Italian children
Abundance of Enterobacterial groups commonly associated with gastrointestinal disease higher in EU/Italian children

De Filippo et al., PNAS (2010)

Gut microbiota differs between children following Western-style diet in Italy and children in rural Africa following traditional diet.



# Impact of diet in shaping your microbiota revealed by a comparative study in children from Europe and rural Africa


Carlotta De Filippo<sup>a</sup>, Duccio Cavalieri<sup>a</sup>, Monta Di pola<sup>b</sup>, Matteo Ramazzotti<sup>c</sup>, Jean Baptiste Poullet<sup>d</sup>, Sebastien Massart<sup>d</sup>, Silvia Collini<sup>b</sup>, Gius, ppe jeraccini<sup>e</sup>, and Paolo Lionetti<sup>b,1</sup>

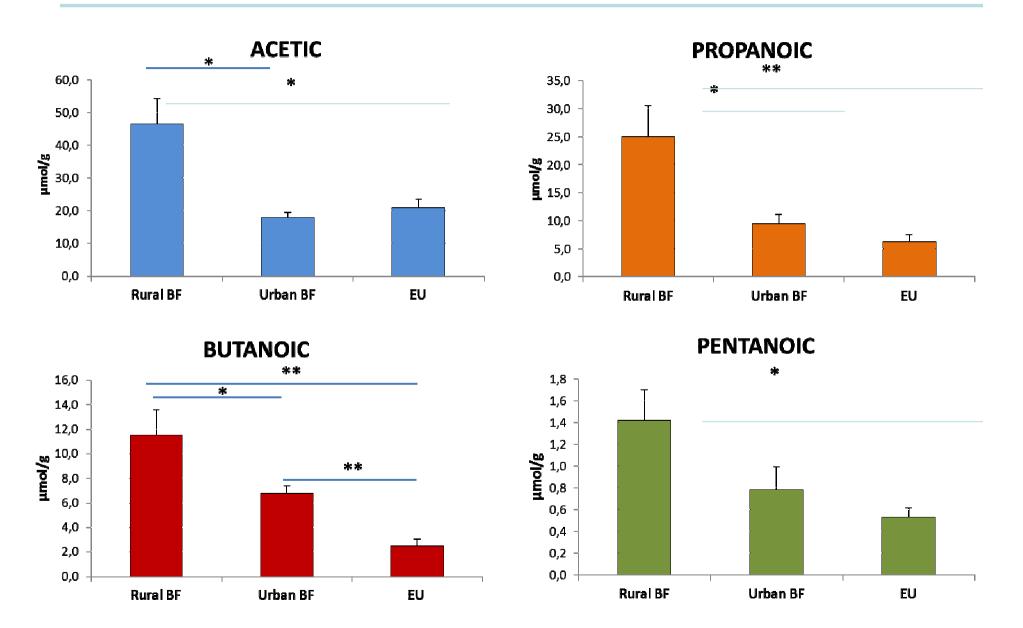
SANG

<sup>a</sup>Department of Preclinical and Clinical Physical egy, University of Florence, 50139 Firenze, Italy; <sup>b</sup>Department of Pediatrics, Meyer Children Hospital, University of Florence, 50139 Firenze, Ital; <sup>c</sup>Department of Biochemical Sciences, University of Florence, 50134 Firenze, Italy; <sup>d</sup>DNA Vision Agrifood S.A., B-4000 Liège, Belgium; and <sup>e</sup>rence onter continentale di Spettrometria di Massa, University of Florence, 50139 Firenze, Italy

De Filippo et al., PNAS (2010)

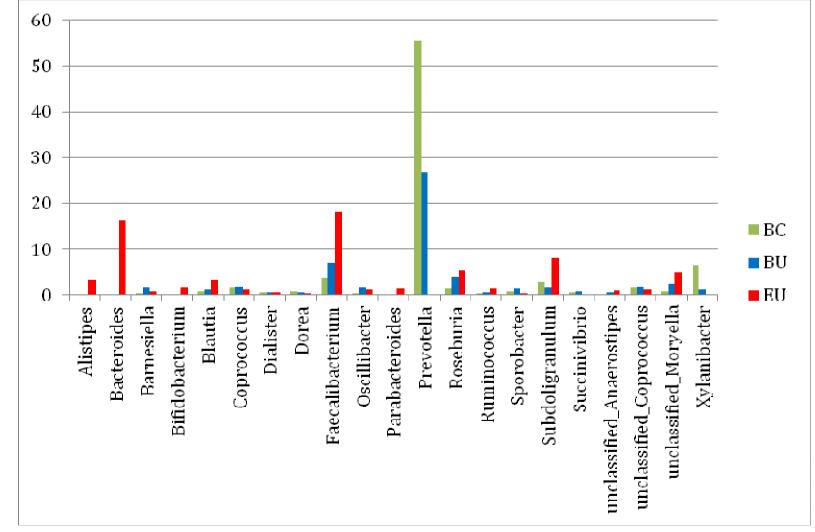
#### Total daily food intake in relation to the average of maximum quantity ingested per day

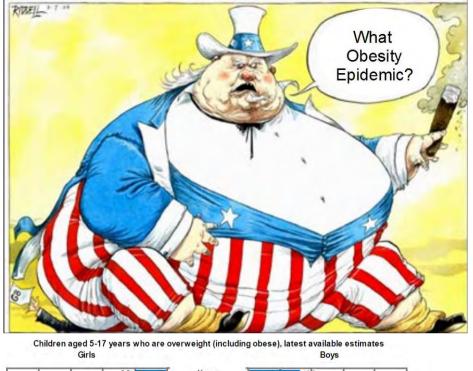


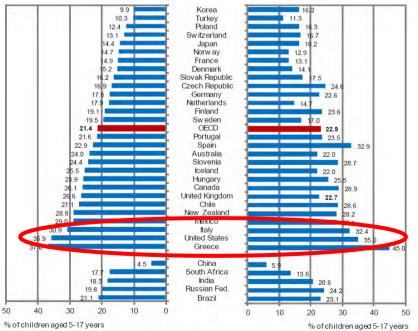

-**BF rural** children is low in fat and <u>rich in fibers and</u> <u>plant-polysaccharides</u> and predominantly vegetarian -**BF urban** children maintain the consumption of cereals and legumes but <u>introduces milk, meat, fish, egg and</u> <u>peanuts.</u>

- **EU** is a a typical western diet high in animal protein, sugar, starch, and fat and <u>low in fiber</u>.


a) Millet; b) Millet flour; c-d) blackeyed peas, Niebè, e) *Parkia biglobosa* tree (Néré); f) Soumbalà , Nerè fruits fermented.


Nutritional composition of foods is available from <u>http://www.inran.it</u> for EU and <u>http://www.fao.org</u> for BF


#### Quantification of SCFAs in fecal samples from BF and EU populations by SPME-GC-MS.

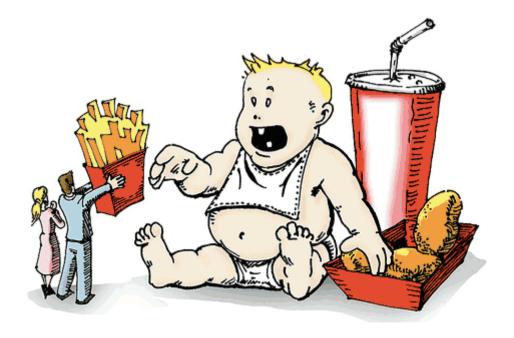



#### Gut microbiota..... but not as we know it!










Source: International Association for the Study of Obesity (2011).

Statlink: http://dx.doi.org/10.1787/888932523994

#### **OBESITY EPIDEMIC**

- Currently 300 million people obese worldwide
- Obese adults are up to 80 times more likely to develop type 2 diabetes than nonobese adults
- Obese adults are 2-3 times more likely to develop heart disease
- Obese adults have a 40% increased risk of dieing from cancer



#### Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease

Zeneng Wang<sup>1,2</sup>, Elizabeth Klipfell<sup>1,2</sup>, Brian J. Bennett<sup>3</sup>, Robert Koeth<sup>1</sup>, Bruce S. Levison<sup>1,2</sup>, Brandon DuGar<sup>1</sup>, Ariel E. Feldstein<sup>1,2</sup>, Earl B. Britt<sup>1,2</sup>, Xiaoming Fu<sup>1,2</sup>, Yoon-Mi Chung<sup>1,2</sup>, Yuping Wu<sup>4</sup>, Phil Schauer<sup>5</sup>, Jonathan D. Smith<sup>1,6</sup>, Hooman Allayee<sup>7</sup>, W. H. Wilson Tang<sup>1,2,6</sup>, Joseph A. DiDonato<sup>1,2</sup>, Aldons J. Lusis<sup>3</sup>, and Stanley L. Hazen<sup>1,2,6,8</sup> <sup>1</sup>Department of Cell Biology, Cleveland Clinic, Cleveland, OH 44195

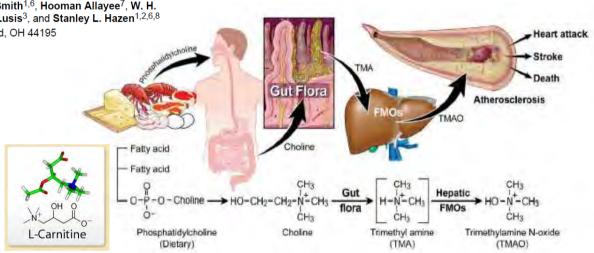
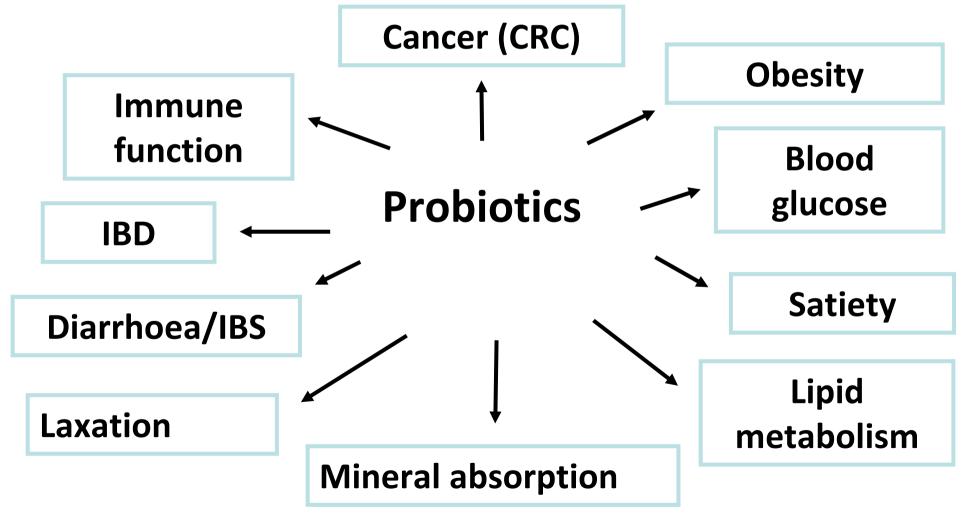




Figure 6. Gut flora dependent metabolism of dietary PC and atherosclerosis Schematic summary illustrating newly discovered pathway for gut flora mediated generation of pro-atherosclerotic metabolite from dietary PC.

#### Koeth et al 2013 Nature Medicine

- •TMA/TMAO confirmed strong link with CVD in patients
- •confirmed microbiota metabolism of L-carnitine/choline  $\rightarrow$  TMA $\rightarrow$ TMAO
- TMA not produced in vegans
- •confirmed inflammatory activity & linked to macrophages reverse cholesterol transport
- •TMAO reduced bile acid pool


# The 3Ps: Probiotics, Prebiotics & Polyphenols

- **PROBIOTICS**...."live microorganisms which when administered in adequate amount confer a health benefit on the host" (FAO, 2001).
  - Lactobacillus
  - Bifidobacterium
  - Escherichia coli Nissle 1917, Bacillus sporogenes, Enteorcoccus faecium, Clostridium butyricum, Saccharomyces ceriviseae
- **PREBIOTICS**.... a selectively fermented ingredient that results in specific changes, in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health. Gibson et al (2010)
  - Inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, lactulose, arabinogalactan, arabinoxylan, pectic-oligosaccharides, glucooligosaccharides
  - Resistant starch and certain whole plant foods including whole grain wheat, whole grain oats
- **POLYPHENOLS**..... 90% resistant to digestion and reach the colon, plant secondary metabolites, usually antioxidant, antimicrobial activities, enzyme/nutrient binding properties and possibly prebiotic type properties, e.g. red-wine polyphenols, apple tannins



### Gut microbiota and systemic health







www.nature.com/ejcn

#### ORIGINAL ARTICLE

Cholesterol lowering and inhibition of sterol absorption by *Lactobacillus reuteri* NCIMB 30242: a randomized controlled trial

ML Jones<sup>1,2</sup>, CJ Martoni<sup>2</sup> and S Prakash<sup>1,2</sup>

- Lb. reuteri selected for Bile Salt Hydrolase activity (2 capsules/day at 2 x 10<sup>9</sup> CFU/capsule) for 9 weeks
- Randomized, double-blind, placebo-controlled, parallel-arm, multicenter study
- N=127 hypercholesterolemic patients
- Probiotic reduced plasma
  - TC by 9.14%
  - LDL-C by 11.64%
  - LDL-C/HDL-C ratio by 13.39%
  - Non-cholesterol plant sterols
  - Increased circulating deconjugated bile acids
- Proposed new cholesterol lowering activity of probiotics via modified absorption of lipids from the gut

#### The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation

Journal of Hepatology (2011)

Thijs W.H. Pols, Lilia G. Noriega, Mitsunori Nomura, Johan Auwerx, Kristina Schoonjans\*

Laboratory of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

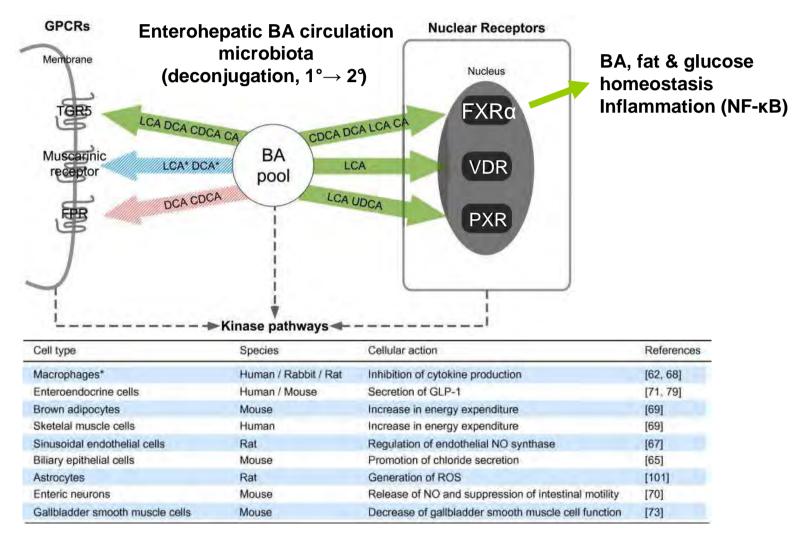



Table 1. Cellular actions described for TGR5 in different cell types. \*Macrophages include alveolar macrophages, Kupffer cells and THP-1 cells.

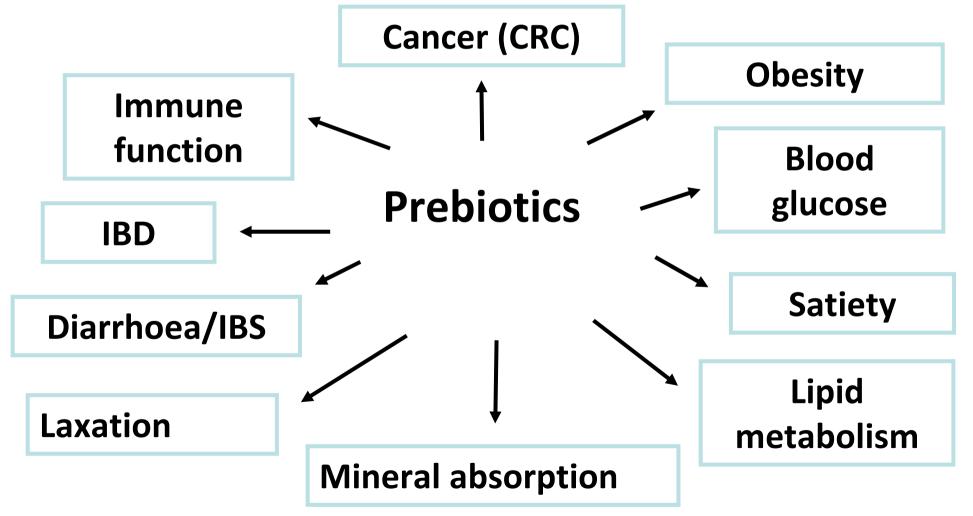
# The 3Ps: Probiotics, Prebiotics & Polyphenols

- **PROBIOTICS**...."live microorganisms which when administered in adequate amount confer a health benefit on the host" (FAO, 2001).
  - Lactobacillus
  - Bifidobacterium
  - Escherichia coli Nissle 1917, Bacillus sporogenes, Enteorcoccus faecium, Clostridium butyricum, Saccharomyces ceriviseae
- **PREBIOTICS**.... a selectively fermented ingredient that results in specific changes, in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health. Gibson et al (2010)
  - Inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, lactulose, arabinogalactan, arabinoxylan, pectic-oligosaccharides, glucooligosaccharides
  - Resistant starch and certain whole plant foods including whole grain wheat, whole grain oats
- **POLYPHENOLS**..... 90% resistant to digestion and reach the colon, plant secondary metabolites, usually antioxidant, antimicrobial activities, enzyme/nutrient binding properties and possibly prebiotic type properties, e.g. red-wine polyphenols, apple tannins

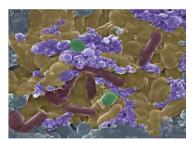
| Prebiotic                                       | Microbiological<br>methods | Dose                                                   | Design                                         | Results                                                             | References                    |
|-------------------------------------------------|----------------------------|--------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|-------------------------------|
| Inulin                                          | Culture                    | 15 g/day for 15 days                                   | Placebo-controlled,<br>crossover study         | Bifidobacteria †<br>and Gram-positive cocci 1                       | Gibson et al. 1995            |
| Indin                                           | Culture                    | 20-40 g/day for 19 days                                | Placebo-controlled,<br>crossover study         | Bifidobacteria †,<br>enterococci 1 and<br>enterobacteria 1          | Kleesen et al. 1997           |
| Inulin                                          | Culture                    | 9 g/day for 28 days                                    | Placebo-controlled,<br>crossover study         | Bifidobacteria † and total<br>facultative anaerobes 1               | Brighenti er al,<br>1999      |
| Inulin                                          | FISH                       | Up to 34 g/day for 64 days.                            | Placebo-controlled,<br>parallel study          | Bifidobacteria †                                                    | Knise et al. 1999             |
| Inulin (long chain)                             | FISH                       | 8 g/day for 14 days                                    | Placebo-controlled,<br>crossover study         | Bifidobacteria †                                                    | Tuohy et al.<br>2001a, 2001b  |
| Inulin                                          | FISH                       | 5 g/day and 8 g/day for 14 days                        | Placebo-controlled,<br>crossover study         | Bifidobacteria †                                                    | Kolida et al. 2007            |
| Jerusalem artichoke<br>inulin or chicory inulin | FISH                       | 7.7 g/day for 7 days                                   | Placebo-controlled,<br>parallel study          | Bifidobacteria †, bacteroides ‡<br>and clostridia [                 | Kleessen et al.<br>2007       |
| Inulin                                          | Culture                    | 0.75, 1.00 or 1.25 g/day for 35 days                   | Placebo-controlled,<br>parallel study          | Bifidobacteria †. clostridia 1<br>and Gram-positive cocci 1         | Yap et al. 2008               |
| Inulin                                          | qPCR.                      | 10 g/day for 16 days to 12<br>healthy adults           | Treatment compared<br>with no treatment period | Bifidobacteria † and<br>Faecalibacterium prausnitzii †              | Ramirez-Farias<br>et al. 2009 |
| FOS                                             | Culture                    | 15 g/day for 15 days                                   | Placebo-controlled,<br>crossover study         | Bifidobacteria †, bacteroides 1,<br>clostridia 1 and fusobacteria 1 | Gibson et al. 1995            |
| FOS                                             | Culture                    | 0-20 g/day for 7 days                                  | Placebo-controlled,<br>parallel study          | Bifidobacteria †                                                    | Bouhnik et al.                |
| scFOS (Actilight <sup>TM</sup> )                | Culture                    | Daily dose of 2.5, 5.0, 7.5 and<br>10 g/day for 7 days | Placebo-controlled,<br>crossover study         | Bifidobacteria †                                                    | Bouhnik et al.<br>2006        |
| FOS + PHGG                                      | FISH                       | 6.6 g/day POS and 3.4 g/day<br>PHGG for 21 days        | Placebo-controlled,<br>crossover study         | Bifidobacteria †                                                    | Tuohy et al.<br>2001a, 2001b  |
| FOS = GOS                                       | Culture                    | 4 g/L FOS and 8 g/L GOS for<br>28 days                 | Placebo-controlled,<br>parallel study          | Lactobacilli † and<br>bifidobacteria †                              | Moro et al. 2002              |
| FOS + GOS                                       | Culture                    | 10 g/L for 28 days                                     | Placebo-controlled,<br>parallel study          | Bifidobacteria †                                                    | Boehm et al. 2002             |
| FOS + GOS                                       | Culture                    | 8 g/L for 42 days                                      | Placebo-controlled,<br>parallel study          | Percentage of<br>bifidobacteria T                                   | Knol et al. 2005              |
| GOS (TOS)                                       | Culture                    | 0-10 g/day for 56 days                                 | Placebo-controlled,<br>parallel study          | Bifidobacteria † and<br>lactobacilli †                              | Ito et al. 1990               |
| GOS (TOS)                                       | Culture                    | 2.5 g/day for 21 days                                  | Feeding study                                  | Bifidobacteria †                                                    | Ito et al. 1993               |
| GOS (TOS)                                       | Culture                    | 10 g/day for 21 days                                   | Feeding study                                  | Bifidobacteria †                                                    | Bouhnik et al.<br>1997        |
| GOS (TOS)                                       | Culture                    | 8.5 g/day and 14.4 g/day for 21 days                   | Placebo-controlled,<br>parallel study          | Bifidobacteria ↔                                                    | Alles et al. 1999             |
| B-GOS                                           | FISH                       | 7 g/day for 7 days                                     | Placebo-controlled,<br>crossover study         | Bifidobacteria †                                                    | Depcint et al. 200            |
| B-GOS                                           | FISH                       | 5.5 g/day for 10 weeks                                 | Placebo-controlled,<br>crossover study         | Bifidobacteria †                                                    | Vulevic et al. 200            |
| GOS (TOS)                                       | FISH                       | 3.5 g/day and 7 g/day for<br>12 weeks                  | Placebo-controlled,<br>parallel study          | Bifidobacteria †                                                    | Silk et al. 2009              |

| Table 2. Human dietary interventions using prebiotic functional foods* |  |
|------------------------------------------------------------------------|--|

| Prebiotic                         | Microbiological<br>methods | Dose                                      | Design                                                                                      | Results                                                                 | References                     |
|-----------------------------------|----------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------|
| Lactulose                         | Culture                    | 3 g/day for 14 days                       | Feeding study                                                                               | Bifidobacteria † and<br>lecithinase-positive<br>clostridia 1            | Terada et al. 1992             |
| Lactulose                         | Culture                    | 5 g/L and 10 g/L for 21 days              | Feeding study                                                                               | Bifidobacteria † and<br>clostridia ↓                                    | Nagendra et.al.<br>1995        |
| Lactulose                         | Culture                    | 20 g/day for 4 weeks                      | Placebo                                                                                     | Bifidobacteria † and<br>lactobacilli †                                  | Ballongue et al.<br>1997       |
| Lactulose                         | FISH + Culture             | 10 g/day for 26 days                      | Placebo-controlled, parallel study                                                          | Bifidobacteria †                                                        | Tuohy et al. 2002              |
| Lactulose                         | Culture                    | 10 g/day for 6 weeks                      | Placebo-controlled, parallel study                                                          | Bifidobacteria †                                                        | Bouhnik et al.<br>2004a, 2004b |
| IMO                               | Culture                    | 13.5 g/day for 14 days                    | Feeding study                                                                               | Bifidobacteria †                                                        | Kohmoto et al.<br>1988         |
| IMO                               | Culture                    | 5-20 g/day (variable dose)<br>for 12 days | Feeding study                                                                               | Bifidobacteria †                                                        | Kaneko et al. 1994             |
| IMO                               | Culture                    | 15 g/day for 7 days                       | Feeding study                                                                               | Bifidobacteria †, lactobacilli<br>† and Clostridium perfringens 1       | Gu et al. 2003                 |
| SOS                               | Culture                    | 3-5 g/day and 15 g/day                    | Placebo-controlled, crossover study                                                         | Bifidobacteria †, clostridia<br>1 and bacteroides 1                     | Benno et al. 1987              |
| SOS                               | Culture                    | 10 g/day for 21 days                      | Placebo-controlled, crossover study                                                         | Bifidobacteria † and clostridia ‡                                       | Hayakawa <i>et al.</i><br>1990 |
| Raffinose                         | FISH                       | 2 g/day for 4 weeks.                      | Placebo-controlled, crossover study                                                         | Bifidobacteria †                                                        | Dinoto et al. 2006             |
| Resistant starch                  | Culture                    | 10 g/day for 7 days                       | Placebo-controlled, parallel study                                                          | Bifidobacteria †                                                        | Bouhnik et al.<br>2004a, 2004b |
| Acacia gum                        | Culture                    | 10 g/day and 15 g/day for<br>10 days      | Placebo-controlled, parallel study                                                          | Bifidobacteria †                                                        | Cherbut et al. 200             |
| Whole grain wheat                 | FISH                       | 48 g/day for 21 days                      | Placebo-controlled, crossover study                                                         | Bifidobacteria † and<br>lactobacilli †                                  | Costabile et al.<br>2008       |
| Gum Arabic                        | qPCR                       | Dose response (5-40 g/day)<br>for 4 weeks | Parallel, different doses, negative<br>control (water), positive control<br>10 g/day inulin | Bifidobacteria †,<br>lactobacilli<br>† and bacteroides †<br>at 10 g/day | Calame et al. 2008             |
| Arabinoxylan-<br>oligosaccharides | 4PCR                       | 10 g/day for 21 days                      | 20 healthy adults, placebo-controlled, crossover study                                      | Bifidobacteria † (bifidobacteria<br>† with placebo)                     | Cloetens et al.<br>2010        |


Table 2. (Continued)

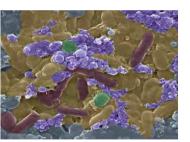
\*The microbiological methods are listed together with the dose of prebiotic, the study design and the main microbiological results in terms of faecal microbiota modulation.

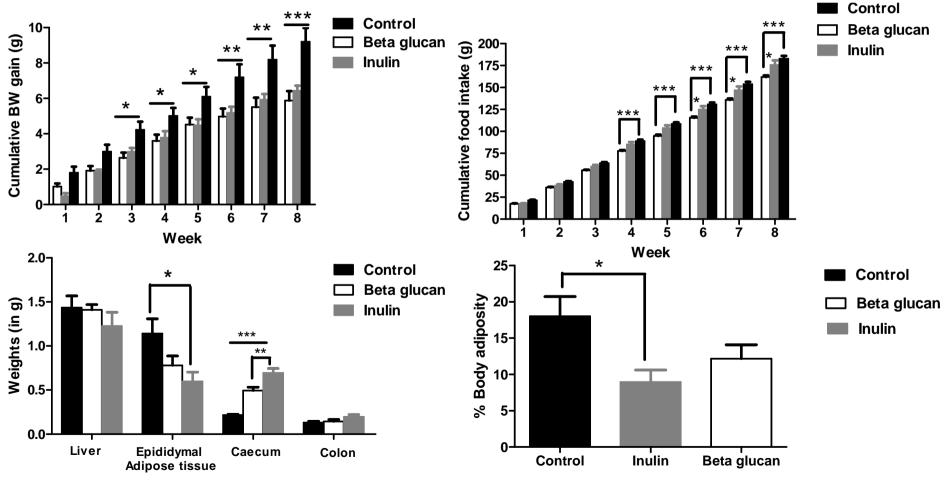

FISH, fluorescent in situ hybridisation; qPCR, quantitative PCR; FOS, flucto-oligosaccharides; scFOS, short-chain fructo-oligosaccharides; PHGG, partially hydrolysed guar gum; GOS, galacto-oligosaccharides; TOS, trans-galacto-oligosaccharides; B-GOS, Bimuno-GOS; IMO, isomalto-oligosaccharides; SOS, soybean oligosaccharides.

### Gut microbiota and systemic health





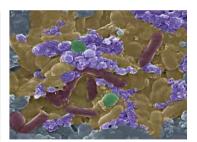

# Delaying the progression of obesity with fermentable carbohydrates and prebiotics




- Does dietary supplementation with prebiotics or fermentable CHO/fiber reduce body weight through enhanced satiety
- High fat fed animals (control)
- High fat supplemented with Inulin (Synergy 1 (10% w/w))
- High fat supplemented with  $\beta$ -glucan (10% w/w)
  - Diets were isoenergetic with cellulose used to reduce calorie load of control, high fat diet.
  - Measures: magnetic resonance imaging (whole body fat deposition and stimulation of hypothalamus appetite centres), PYY, gut microbiota and caecal/faecal metabolites

Tulika Arora, Gary Frost et al. PLoS One 2012

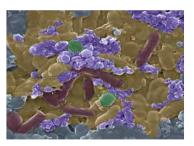
## Inulin and β-glucan reduce body weight gain

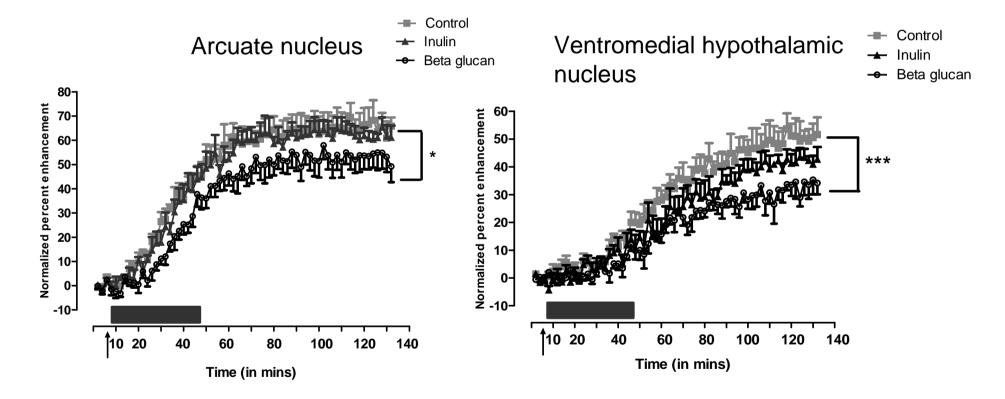





Tissue

Groups

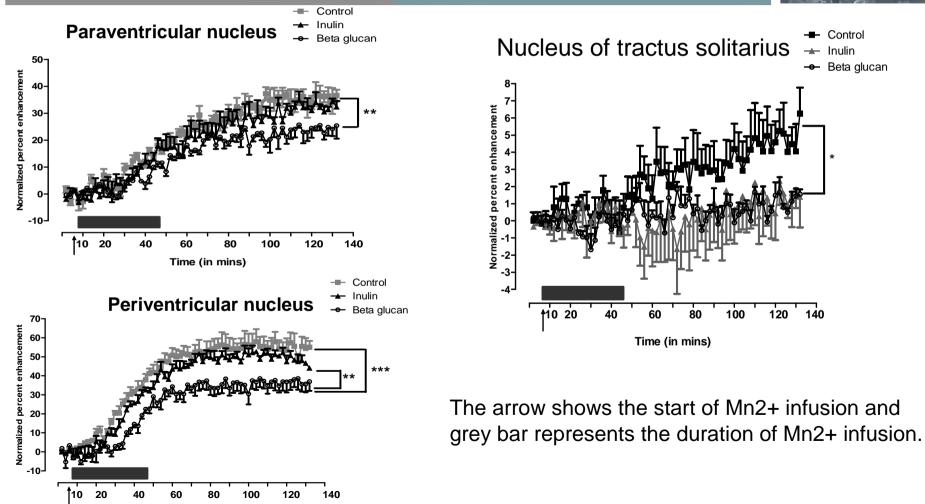

Effect of inulin and  $\beta$ -glucan supplementation on adiposity parameters and PYY level in high fat fed mice.




|                                      | HFD-C                    | HED-I                      | HFD-BG                    |
|--------------------------------------|--------------------------|----------------------------|---------------------------|
| Epididymal adipose tissue<br>(g)     | 1.14±0.16 <sup>a</sup>   | 0.59±0.10 <sup>b</sup>     | 0.77±0.10ª                |
| Whole body adiposity (%)             | 18.03±2.72ª              | 8.95±1.66 <sup>b</sup>     | 12.17±1.92ª               |
| Liver lipid content (%)              | 6.30±1.62 <sup>a</sup>   | 6.02±1.97 <sup>a</sup>     | 6.02±1.36 <sup>a</sup>    |
| Muscle lipid content (%)             | 0.96±0.149ª              | 0.72±0.05 <sup>a</sup>     | 1.29±0.57ª                |
| Visceral fat (g)                     | 2.17±0.46 <sup>a</sup>   | 1.23±0.17ª                 | 1.49±0.27ª                |
| Subcutaneous fat (g)                 | 3.40±0.53ª               | 2.08±0.13 <sup>a</sup>     | 2.44±0.28 <sup>a</sup>    |
| Adipocyte size (µm)                  | 122.25±10.2 <sup>a</sup> | 72.95±8.72<br><sup>b</sup> | 111.19±4.03 <sup>ac</sup> |
| Adipocyte number (x10 <sup>7</sup> ) | 1.43E+08 <sup>a</sup>    | 1.31E+08 <sup>a</sup>      | 1.86E+08 <sup>a</sup>     |
| Liver size (g)                       | 1.43±0.13 <sup>a</sup>   | 1.23±0.15 <sup>a</sup>     | 1.40±0.06 <sup>a</sup>    |
| Caecum (g)                           | 0.21±0.01ª               | 0.69±0.05 <sup>b</sup>     | 0.49±0.03°                |
| Colon (g)                            | 0.13±0.01ª               | 0.19±0.02 <sup>a</sup>     | 0.14±0.02ª                |
| PYY (pmol/ml)                        | 0.10±0.012ª              | 0.10±0.008<br>ª            | 0.13±0.016 <sup>a</sup>   |
| Colonic PYY                          | 27.3 3.7                 | 22.8 5.3                   | 19.9 1.6                  |

The values with different superscripts letters are significantly different from each other

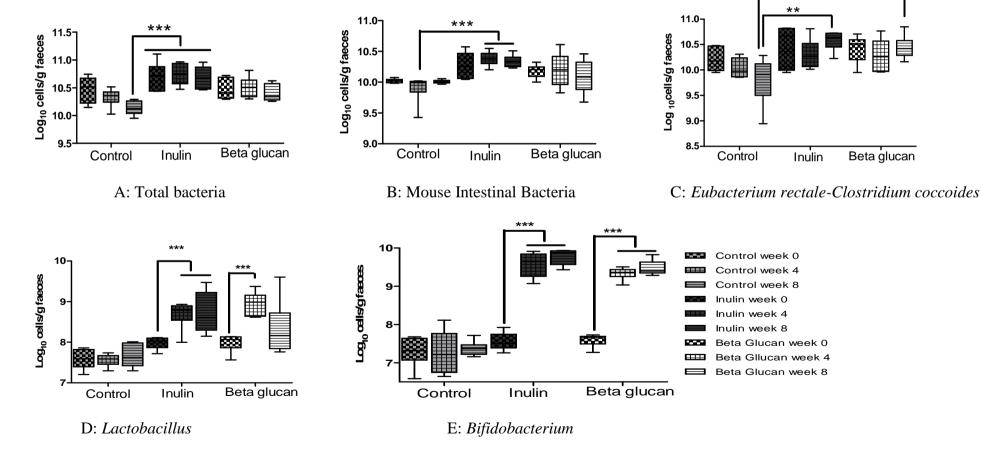

Effect of inulin and  $\beta$ -glucan supplementation on changes in signal intensity in the appetite centres of the brain measured by MRI





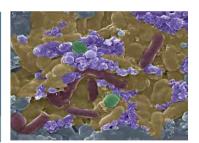

The arrow shows the start of Mn2+ infusion and grey bar represents the duration of Mn2+ infusion.

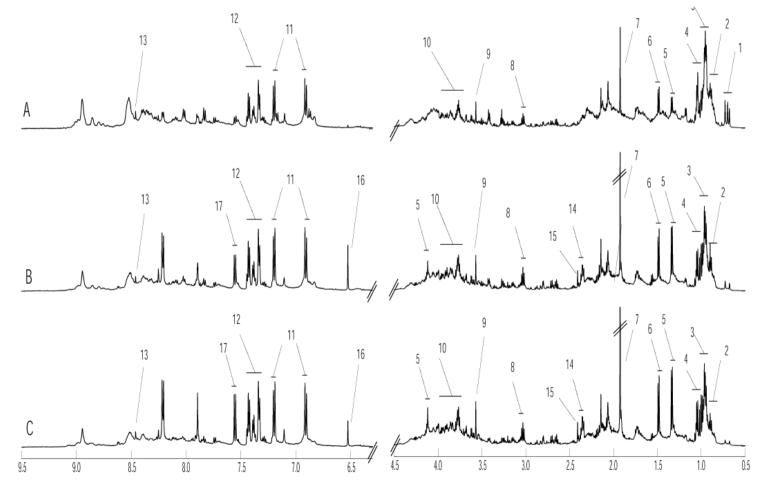

Effect of inulin and  $\beta$ -glucan supplementation on changes in signal intensity in the appetite centres of the brain measured by MRI





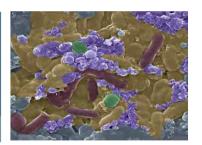

Time (in mins)


Effect of inulin and β-glucan supplementation on murine gut microbiota compared to high fat diet supplemented with cellulose

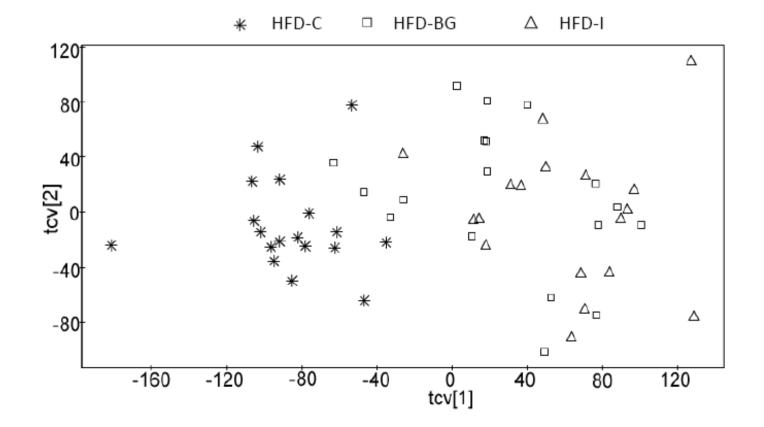




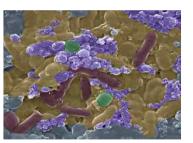

Similar findings observed for caecal contents at week 8.


Effect of inulin and β-glucan supplementation on murine faecal metabolite profiles (NMR) compared to high fat diet supplemented with cellulose






Key: 1, Bile acids; 2, Butyrate; 3, Isoleucine, leucine and valine; 4, Propionate; 5, Lactate; 6, Alanine; 7, Acetate; 8, Lysine; 9, Glycine; 10, Glucose and amino acids; 11, Tyrosine; 12, Phenylalanine, 13, Formate; 14, Glutamate; 15, Succinate; 16, Fumarate; 17, Uracil.


NMR based metabolomics separates cellulose from inulin or β-glucan supplemented animals on high fat diets



PCA scores plot of fecel metabolite profiles showing clear clustering patterns for mice fed with HFD-C, HFD-BG and HFD-I groups.



# Fermentable fibers/prebiotics reduce body weight but by different mechanisms



- β-glucan reduced cumulative body weight apparantly through reduced stimulation of hypothalamic appetite centres, increased satiety and reduced food intake.
- Inulin appeared to reduce cumulative body weight gain through reduced adipocyte size and whole body adiposity
- SCFA concentrations in the caecum  $\beta$ -glucan > inulin > high fat control
- Inulin gave increased caecum weight
- β-glucan had higher excretion of glucose in faeces while high-fat control had higher excretion of butyrate and propionate

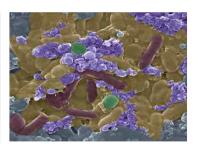
Arora et al. PLoS One 2012

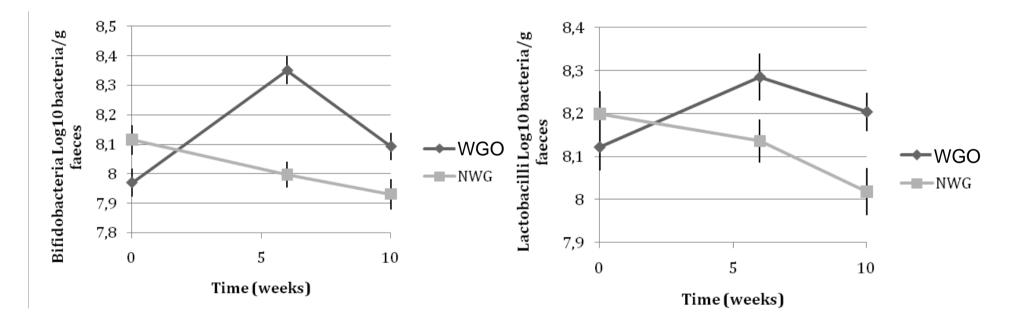


Whole grain oats vs non-whole grain breakfast cereal dietary intervention in subjects "at risk" of developing the metabolic syndrome

•Randomized, crossover study, 30 volunteers, male and female with slightly elevated levels of either total cholesterol or fasting glucose at risk of developing metabolic disorders

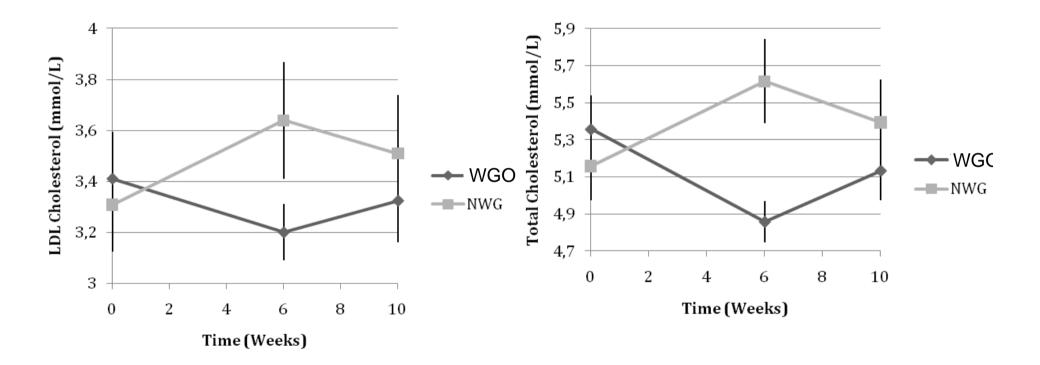
| Run-in  | WGO     | Wash out | NWG     | Follow up |  |
|---------|---------|----------|---------|-----------|--|
|         |         |          |         |           |  |
| Run-in  | NWG     | Wash out | WGO     | Follow up |  |
| 2 weeks | 6 weeks | 4 weeks  | 6 weeks | 4 weeks   |  |


•Two 6 week treatment periods separated by 4 week washout periods.


•Whole oat grain (WGO) vs non-whole grain cereal (NWG)

•Samples collected before and after cereal consumption and then 4 weeks following end of consumption.

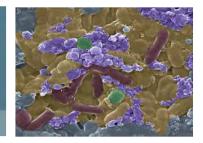
Blood (fasted), 24 hour urine, saliva and fecal samples


Connolly et al. In preparation Supported by **Jordans Cereals**  Whole grain oats modified gut microbiota in beneficial manner compared to non-whole grain cereal



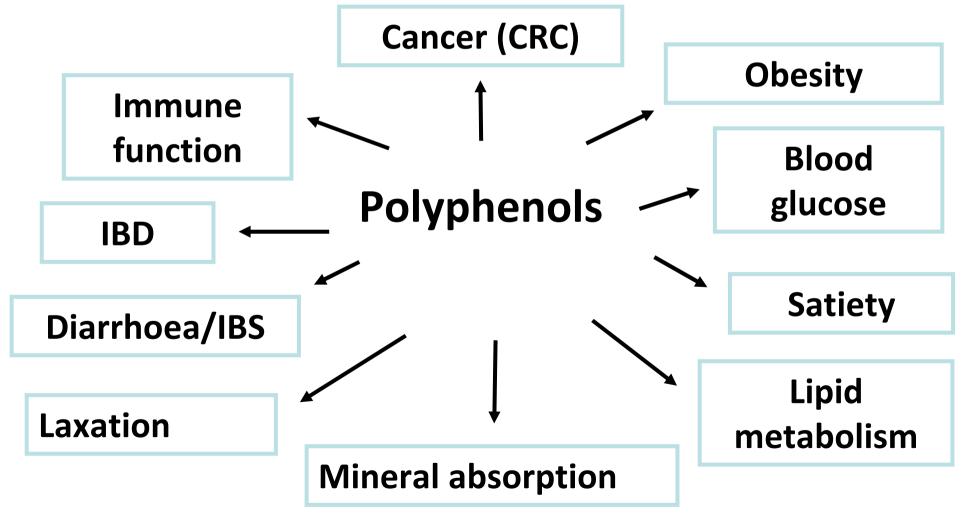


Whole grain oats significantly increased faecal bifidobacteria and lactobacilli but no other bacterial groups measured.


# Whole grain oats improved blood cholesterol profiles

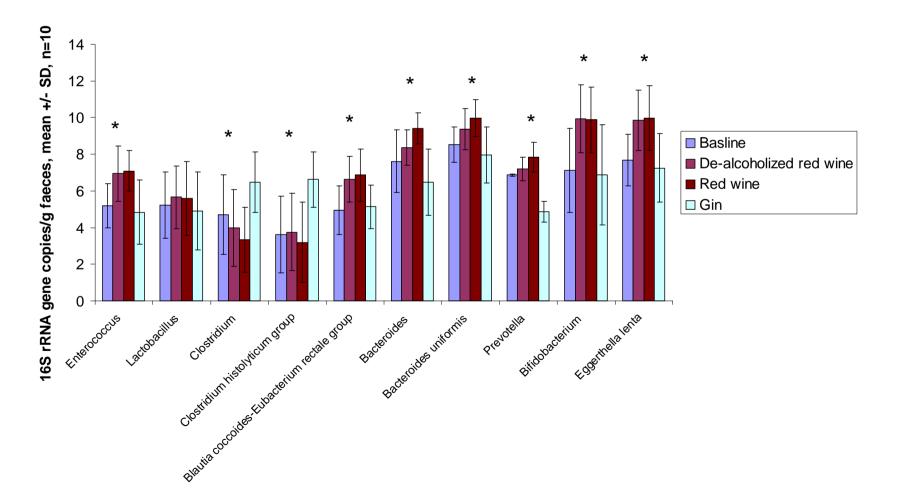


•Whole grain oats significantly reduced LDL and total cholesterol, reversing a trend towards elevated LDL and TC in the non-whole grain breakfast cereal treatment.


## The 3Ps: Probiotics, Prebiotics & Polyphenols

- **PROBIOTICS**...."live microorganisms which when administered in adequate amount confer a health benefit on the host" (FAO, 2001).
  - Lactobacillus
  - Bifidobacterium
  - Escherichia coli Nissle 1917, Bacillus sporogenes, Enteorcoccus faecium, Clostridium butyricum, Saccharomyces ceriviseae
- **PREBIOTICS**.... a selectively fermented ingredient that results in specific changes, in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health. Gibson et al (2010)
  - Inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, lactulose, arabinogalactan, arabinoxylan, pectic-oligosaccharides, glucooligosaccharides
  - Resistant starch and certain whole plant foods including whole grain wheat, whole grain oats
- **POLYPHENOLS**..... 90% resistant to digestion and reach the colon, plant secondary metabolites, usually antioxidant, antimicrobial activities, enzyme/nutrient binding properties and possibly prebiotic type properties, e.g. red-wine polyphenols, apple tannins




### Gut microbiota and systemic health





### Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers<sup>1–4</sup>

María Isabel Queipo-Ortuño, María Boto-Ordóñez, Mora Murri, Juan Miguel Gomez-Zumaquero, Mercedes Clemente-Postigo, Ramon Estruch, Fernando Cardona Diaz, Cristina Andrés-Lacueva, and Francisco J Tinahones



American Journal of Clinical Nutrition, 2012

### Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers<sup>1-4</sup>

María Isabel Queipo-Ortuño, María Boto-Ordóñez, Mora Murri, Juan Miguel Gomez-Zumaquero, Mercedes Clemente-Postigo, Ramon Estruch, Fernando Cardona Diaz, Cristina Andrés-Lacueva, and Francisco J Tinahones

TABLE 4

Anthropometric and biochemical variables during the study'

|                          | Baseline<br>(washout period) | De-alcoholized red<br>wine period | Red wine<br>period    | Gin period            | $P^2$ |
|--------------------------|------------------------------|-----------------------------------|-----------------------|-----------------------|-------|
| Weight (kg)              | $97.8 \pm 21.3$              | 97.8 ± 19.4                       | 96.4 ± 20.6           | 97.2 ± 19.6           | 0.306 |
| Waist (cm)               | $106.7 \pm 14.3$             | $106.5 \pm 14.4$                  | $105.1 \pm 14.5$      | $105.7 \pm 13.5$      | 0.392 |
| Hip (cm)                 | $111.0 \pm 10.4$             | $109.0 \pm 12.8$                  | $110.2 \pm 11.1$      | $110.8 \pm 10.3$      | 0.908 |
| DBP (mm Hg)              | $97.4 \pm 15.2^{a}$          | $91.0 \pm 12.9^{n}$               | $86.5 \pm 11.6^{b}$   | $98.4 \pm 14.3^{a}$   | 0.026 |
| SBP (mm Hg)              | $145.4 \pm 23.9^{a}$         | $135.1 \pm 24.6^{b}$              | $129.5 \pm 17.6^{b}$  | $142.7 \pm 22.3^{a}$  | 0.026 |
| BMI (kg/m <sup>2</sup> ) | $27.6 \pm 3.2$               | $27.6 \pm 3.1$                    | $27.5 \pm 2.9$        | $27.6 \pm 2.8$        | 0.241 |
| Glucose (mg/dL)          | $111.3 \pm 23.1$             | $104.5 \pm 24.2$                  | $108.5 \pm 16.4$      | $108.8 \pm 17.2$      | 0.772 |
| Uric acid (mg/dL)        | $5.7 \pm 1.1^{n}$            | $5.3 \pm 1.0^{a}$                 | $5.0\pm0.8^{b}$       | $5.4 \pm 1.5^{a}$     | 0.018 |
| GOT (mg/dL)              | $22.0 \pm 7.3^{a}$           | $14.3 \pm 4.0^{b}$                | $17.6 \pm 13.4^{b}$   | $19.1 \pm 8.0^{a}$    | 0.021 |
| GPT (mg/dL)              | $46.4 \pm 12.6$              | $41.2 \pm 7.7$                    | $42.0 \pm 9.3$        | $43.1 \pm 6.9$        | 0.888 |
| GGT (mg/dL)              | $36.9 \pm 25.6^{a}$          | $30.1 \pm 13.5^{b}$               | $36.1 \pm 16.3^{b}$   | $38.0 \pm 27.7^{a}$   | 0.012 |
| Triglycerides (mg/dL)    | $245.4 \pm 231.7^{a}$        | $171.7 \pm 206.7^{b}$             | $179.4 \pm 177.1^{b}$ | $190.1 \pm 222.5^{b}$ | 0.001 |
| Cholesterol (mg/dL)      | $257.5 \pm 88.6^{a}$         | $241.2 \pm 94.9^{a}$              | $188.6 \pm 61.6^{b}$  | $235.3 \pm 91.4^{a}$  | 0.008 |
| LDL cholesterol (mg/dL)  | $129.6 \pm 41.9$             | $123.5 \pm 28.1$                  | $125.7 \pm 30.3$      | $130.6 \pm 22.0$      | 0.266 |
| HDL cholesterol (mg/dL)  | $58.5 \pm 16.7^{a}$          | $48.8 \pm 17.1^{b}$               | $49.7 \pm 14.3^{b}$   | $52.3 \pm 16.5^{a}$   | 0.001 |
| CRP (mg/L)               | $6.9 \pm 2.6^{a}$            | $4.3 \pm 2.3^{b}$                 | $4.6 \pm 2.5^{b}$     | $6.8 \pm 3.7^{a}$     | 0.001 |

<sup>1</sup> All values are means  $\pm$  SDs; n = 10 subjects. Means in a row with different superscript letters are significantly different, P < 0.05 (Wilcoxon's signed-rank test with post hoc Bonferroni test). CRP, C-reactive protein; DBP, diastolic blood pressure, GGT,  $\gamma$ -glutamyl transferase; GOT, glutamic oxaloacetic transaminase; GPT, glutamic pyruvic transaminase; SBP, systolic blood pressure.

<sup>2</sup> Derived by using the Friedman test.



Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study<sup>1-3</sup>

Xenofon Tzounis, Ana Rodriguez-Mateos, Jelena Vulevic, Glenn R Gibson, Catherine Kwik-Uribe, and Jeremy PE Spencer

The American Journal of Clinical Nutrition

Log Difference Relative to Baseline

(2011) 93:62-72.

Lac

1.0 -\*\*\* 0.5 \*\*\* High-Flavanol 0.8 Low-Flavanol а 0.4 0.6 Log Difference Relative to Control 0.4 0.3 Bif а 0.2 \*\*\* EC Erec 0.2 С 0.0 Total 0.1 -0.2 Bac -0.4 -0.6 Total Bif Bac EC Lac Erec -0.1 \*\*\* -0.8 d Clos Clos -0.2 -1.0 -

# Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study<sup>1-3</sup>

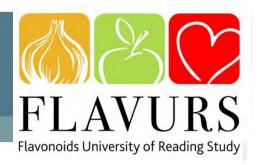
Xenofon Tzounis, Ana Rodriguez-Mateos, Jelena Vulevic, Glenn R Gibson, Catherine Kwik-Uribe, and Jeremy PE Spencer

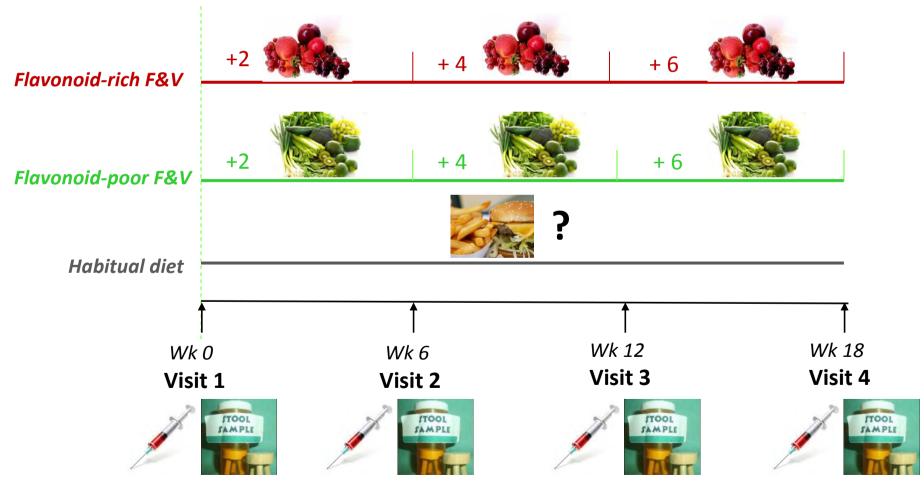
#### TABLE 3

Anthropometric and biochemical variables before (Pre) and after (Post) the 4-wk intervention with either the low-cocoa flavanol or high-cocoa flavanol drink  $(n = 20)^{T}$ 

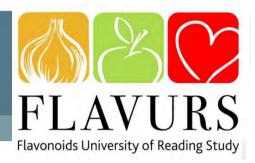
|                                               | Low-flava        | nol cocoa         | High-flavanol cocoa |                       |  |
|-----------------------------------------------|------------------|-------------------|---------------------|-----------------------|--|
|                                               | Pre              | Post              | Pre                 | Post                  |  |
| BMI (kg/m <sup>2</sup> )                      | $23.1 \pm 2.02$  | $23.2 \pm 2.06$   | $23.2 \pm 2.1$      | $23.2 \pm 2.1$        |  |
| Diastolic BP (mm Hg)                          | $71.4 \pm 12.95$ | $72.0 \pm 11.75$  | $69.8 \pm 6.9$      | $68.8 \pm 7.2$        |  |
| Systolic BP (mm Hg)                           | $107.3 \pm 7.81$ | $105.8 \pm 11.32$ | $110.0 \pm 11.6$    | $105.7 \pm 12.8$      |  |
| Total cholesterol (mmol/L)                    | $4.70 \pm 0.19$  | $4.31 \pm 0.1^2$  | $4.77 \pm 0.2$      | $4.34 \pm 0.2^2$      |  |
| HDL cholesterol (mmol/L)                      | $1.36 \pm 0.08$  | $1.29 \pm 0.08$   | $1.39 \pm 0.09$     | $1.33 \pm 0.11$       |  |
| LDL cholesterol (mmol/L)                      | $2.63 \pm 0.16$  | $2.50 \pm 0.14$   | $2.57 \pm 0.17$     | $2.48 \pm 0.16$       |  |
| Triacylglycerol (mmol/L)                      | $1.06 \pm 0.08$  | $1.05 \pm 0.07$   | $1.07 \pm 0.08$     | $0.87 \pm 0.09^{2.2}$ |  |
| Glucose (mmol/L)                              | $5.13 \pm 0.10$  | $5.08 \pm 0.10$   | $5.13 \pm 0.13$     | $5.18 \pm 0.12$       |  |
| C-reactive protein (mg/mL)                    | $0.26 \pm 0.11$  | $0.31 \pm 0.14$   | $0.27 \pm 0.12$     | $0.19 \pm 0.09^{2.5}$ |  |
| Fecal water TAC (mmol/L Trolox <sup>4</sup> ) | $479.2 \pm 48.3$ | $459.7 \pm 41.3$  | $487.2 \pm 46.6$    | 473.2 ± 55.6          |  |

<sup>1</sup> All values are means  $\pm$  SDs. BP, blood pressure; TAC, total antioxidant capacity. Significance was calculated by the Tukey-Kramer test after 2-factor repeated-measures ANOVA with time and treatment as the 2 factors.


<sup>2</sup> Significantly different from baseline, P < 0.05


<sup>3</sup> Significantly different from low–cocoa flavanol interventions, P < 0.01.

<sup>4</sup> Trolox (Sigma Chemical Co, Poole, United Kingdom).


The American Journal of Clinical Nutrition

## Increasing fruit and vegetable intake *in vivo* – FLAVURS project





### **High Flavonoid group**





Half a grapefruit







One-third aubergine 1 medium banana

1 medium apple



1 handful black grapes







2 satsumas

2 tbsp of raspberries

or blueberries

2 cereal bowls of red 1 glass of fruit juice

lettuce or fresh spinach black currants

1 medium red onion 4 heaped tbsp of kale

14 cherries 4 heaped tbsp of



7 cherry tomatoes

7 strawberries





for High flavonoid group





Fruit juices

Dried cranberries/ blueberries

(Strawberry and raspberry/

Blackberry and blueberry)

Apple crumble

Fruit smoothies

(Blackcurrant /apple/cranberry /orange)

**Roasted** peppers Pepperdew cherry peppers

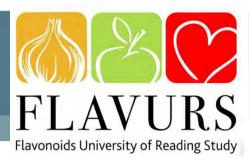
#### All fruits and vegetables contain ≥ 15mg/100g of flavonoids





2 purple or red plums 3 heaped tbsp of cabbage




10 radishes



3 heaped tbsp of broad beans



#### Low Flavonoid group



Rhubarb crumble Dried fruits (raisins, currants, mango)

Fruit smoothies (tropical mix)

Fruit juices (mango/ pineapple)

Guacamole Houmous

Soups (Carrot & coriander/broccoli & stilton)

Canned chopped tomatoes



2 kiwis

Half an avocado







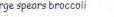
1 large tomato 2 slices (2-inch slice) mango



1 tbsp of raisins or dried currants



2 rings canned pineapple
















< 5mg/100g of flavonoids

6 halves of canned apricots

All fruits and vegetables contain

2 heaped tosp of

rhubarb

2 inch piece

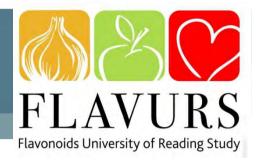
of cucumber

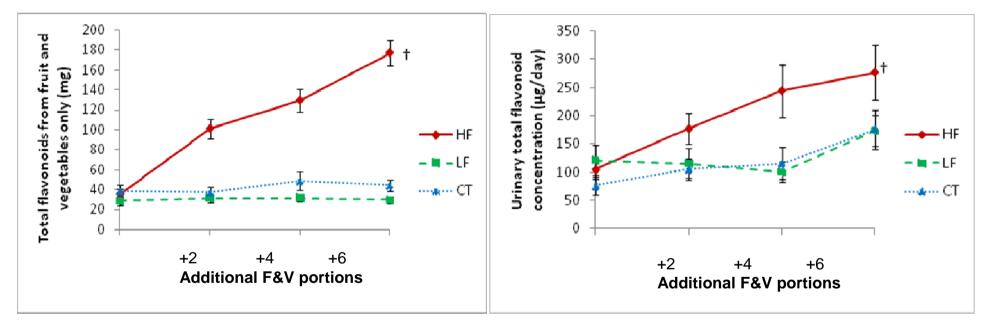
Half a leek

3 prunes



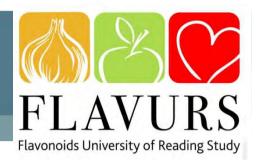


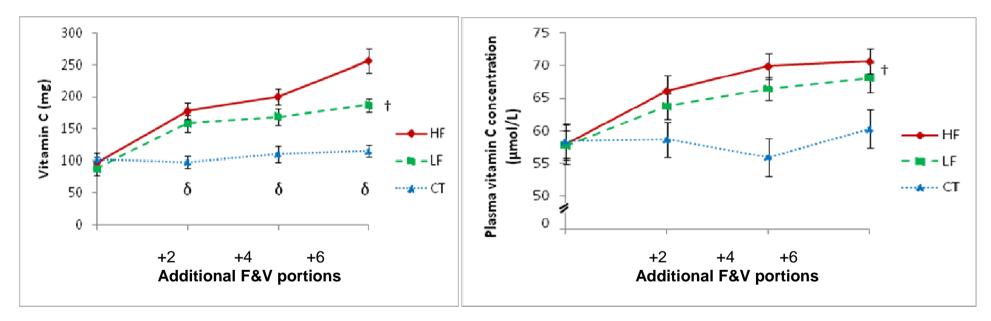

3 heaped tbsp of sweet corn or mushrooms


3 heaped tbsp of carrots 8 florets of



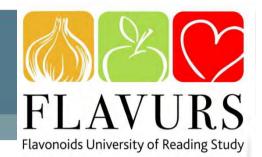
cauliflower

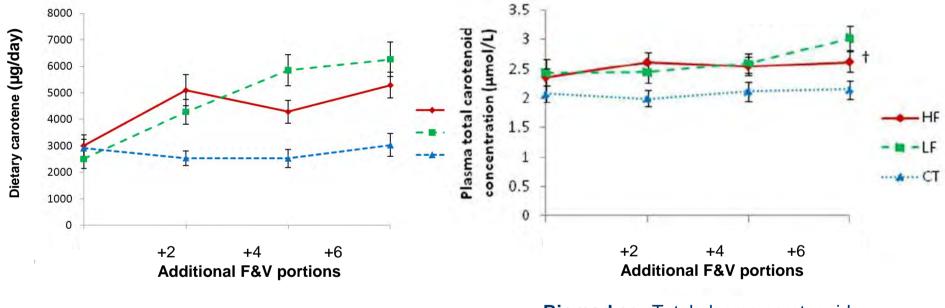

#### **FLAVONOIDS**





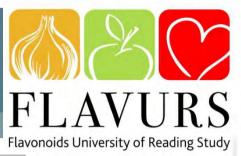

**Dietary intake:** HF dose dependent increase HF higher vs LF & CT +2,+4,+6 Time x treatment (P=0.006) **Biomarker :** 24h urinary flavonoid & metabolites HF dose dependent increase HF higher vs LF & CT +2, +4, +6 Time x treatment (P=0.0001)

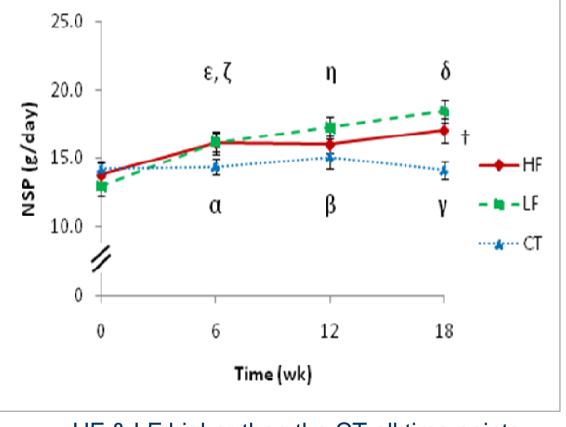

#### **VITAMIN C**





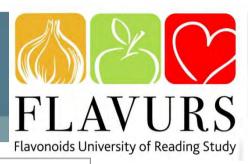

**Dietary intake:** HF & LF dose increase HF & LF vs CT higher +2, +4, +6 Time x treatment (P=0.0001) **Biomarker:** Plasma vitamin C HF & LF dose increase HF & LF vs CT higher +2, +4, +6 Time x treatment (P=0.0001)

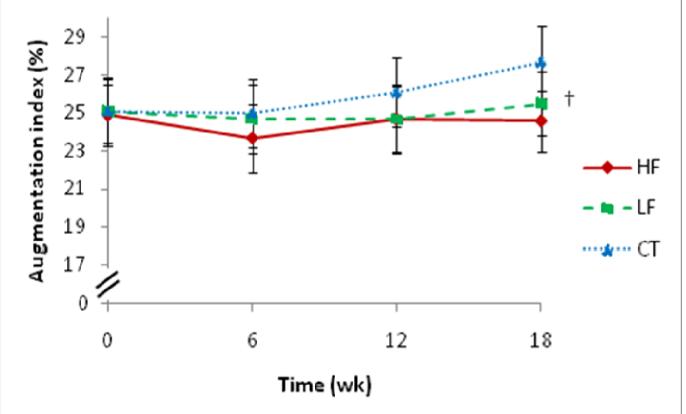

#### **CAROTENOIDS**





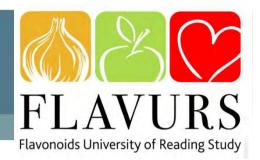

**Dietary intake :** LF dose dependent increase HF & LF higher CT all points Time x treatment (P=0.001) **Biomarker :** Total plasma carotenoids LF dose dependent increase HF & LF higher CT all points Time x treatment (P=0.0001)

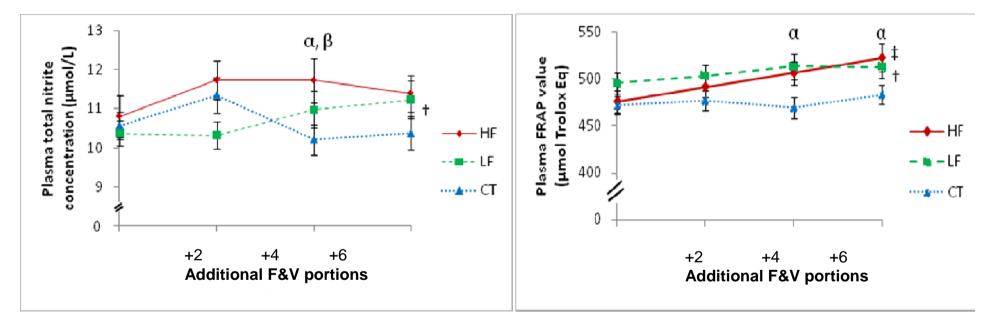

#### Non-starch polysaccharide (NSP) changes






HF & LF higher than the CT all time points LF dose dependent increase Time x treatment interaction (P=0.0001).


## F&V impact on arterial stiffness measured by PWA



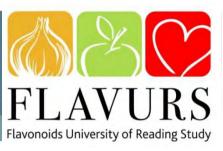


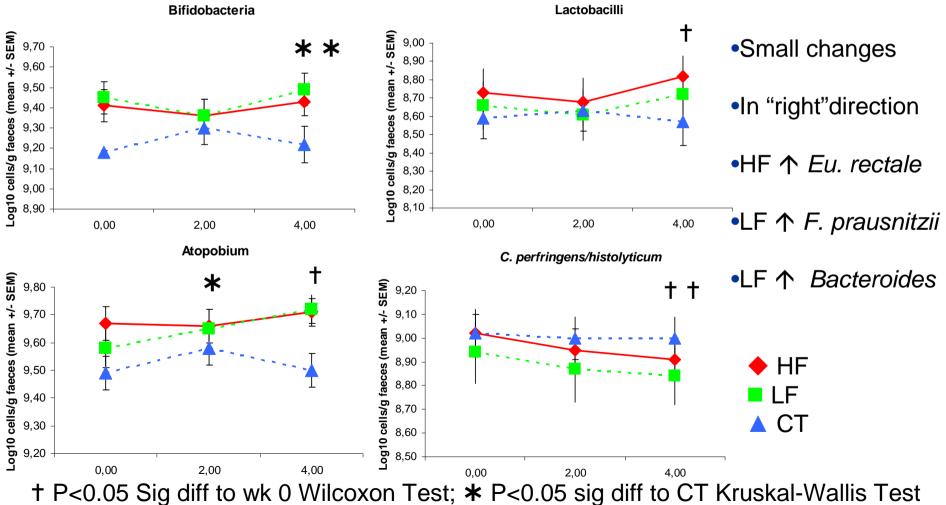

HF and LF attenuated increase shown in CT group Time x treatment P=0.009 when standardised for HR75 P=0.03

#### **Other blood parameters**






#### Total plasma nitrate/nitrite


HF higher than LF & CT +6 Time x treatment (p=0.03)

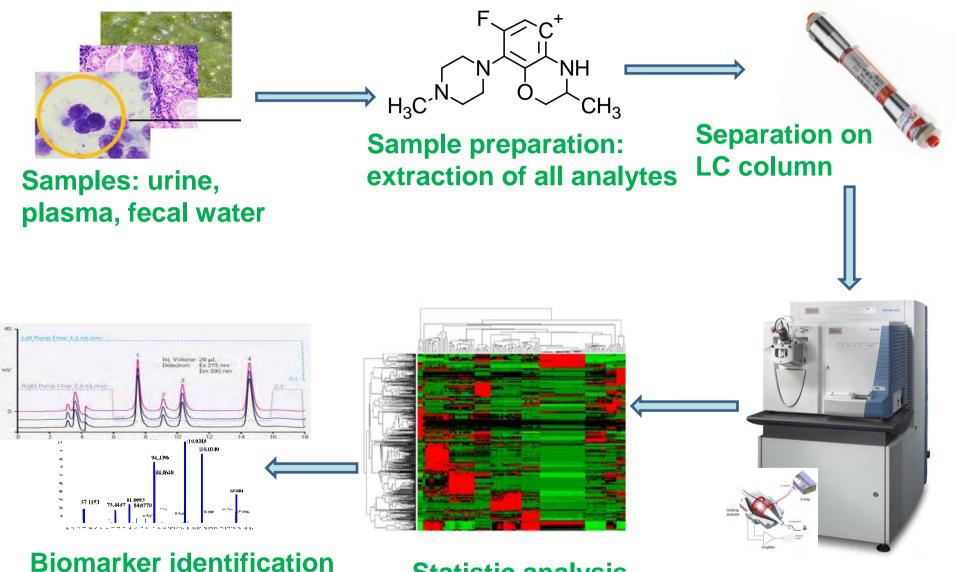
#### **Plasma FRAP**

HF dose dependent increase LF higher +4 & +6 vs baseline Time x treatment (P=0.009)

## High fruit and veg diet appears to modulate gut microbiota in "benificial" manner






### UNTARGETED METABOLOMIC ANALYSIS OF URINE

- Urine dilution 1:5
- HPLC Analysis on RP column in positive and negative ionization mode
- XL Orbitrap in Full Scan MS and MS/MS within high resolution and mass accuracy Approaches
- Substances considered as biomarkers when *p*<0.005 (*t*-test)
- Annotation of metabolites:
  - Mass accuracy of precursor ion [M+H]+ (< 3 ppm error)</li>
  - Isotopic pattern distribution

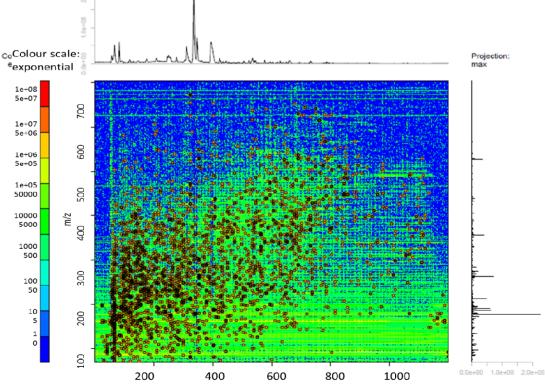
• Databases used for annotation: In-house data base, Human Metabolome Database, Metlin, MAssBank, LipidMaps



### **Metabolomics workflow**



Statistic analysis


### Untargeted analysis wit use of HR mass

#### ALLIGNMENT OF CHROMATOGRAMS, BATCH CORRECTIONS, PEAK PICKING UNIVARIATE ANALYSIS with XCMS

Data processing - XCMS using the "matchedFilter" peak picking method with Spectra Filter Window Mower function.

For each mass feature two linear mixed models were fitted, diet-time interaction and time alone.

Both models were adjusted for baseline. p values for all features were corrected for multiple testing according to the two-stage Benjamini and Hochberg step-up false discovery rate (FDR).

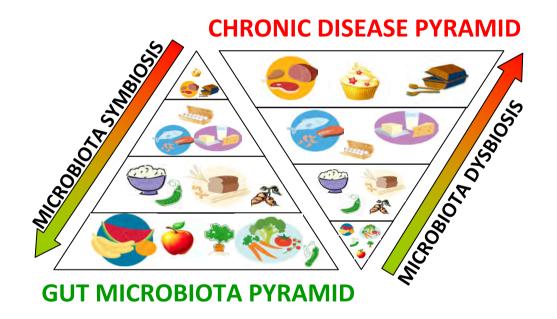


| Rt    | Annotation; Elemental Composition, MW, adjusted p value                            |
|-------|------------------------------------------------------------------------------------|
| 1.10  | ProlineBetaine; MMW: 143.0946, p 0.002 ↑Diet A;                                    |
| 2.20  | N-acetyl-S-(2-hydroxypropyl) cysteine, MMW: C8H15NO4S; p                           |
| 3.80  | Hydroxy Hippuric Acid (isomer); MMW: 195.0531, p 0.02 ↑Diet A;                     |
| 4.40  | Hydroxy Hippuric Acid (isomer); MMW: 195.0531, p 0.002 ↑Diet A,                    |
| 4.82  | Vanilloylglycine, MMW: 225.0637; p.0.03 ↑ Diet A, B;                               |
| 5.70  | Hippuric Acid, MMW: 179.0582; p 0.002 ↑Diet A                                      |
| 5.89  | Phenylacetylglutamine, MMW: 264.1110, p 0.04 ↑Diet A;                              |
| 6.15  | FerulicAcid Sulfate , MMW: 274.0731, p 0.04; ↑Diet B                               |
| 6.26  | Dihydroxyphenyl-γ-valerolactone-O-sulphate MMW:288.0306 p 0.0003 ↑Diet A;          |
| 6.56  | Dihydroxyphenyl- $\gamma$ -valerolactone-O-methyl-O-GLC, p 0.01 $\uparrow$ Diet A; |
| 7.14  | Cresol-Glucuronide, MMW: 284.0896; p 0.001 ↓Diet A;                                |
| 7.35  | Hydroxy Hippuric Acid (isomer), MMW: 195.0531, p 0.01 ↑ Diet A;                    |
| 7.76  | Hydroxy-tridecenoic acid GLC, MMW: 404.2046, p 0.001 ↑ Diet A;                     |
| 12.38 | Iberin N-acetyl-cysteine MMW: p 0.0001 个 Diet A & p 0.001个 Diet B                  |

#### Adherence to a Mediterranean diet is associated with a better health-related quality of life: a possible role of high dietary antioxidant content

Marialaura Bonaccio,<sup>1,2</sup> Augusto Di Castelnuovo,<sup>1</sup> Americo Bonanni,<sup>1,3</sup> Simona Costanzo,<sup>1</sup> Francesca De Lucia,<sup>1</sup> George Pounis,<sup>1</sup> Francesco Zito,<sup>1</sup> Maria Benedetta Donati,<sup>2</sup> Giovanni de Gaetano,<sup>2</sup> Licia Iacoviello,<sup>2,4</sup> on behalf of the Moli-sani project Investigators\*

|                                  |       |                |           | β*                       | 95% CI         | p Value** | B*                                 | 95% CI         | p Value** |
|----------------------------------|-------|----------------|-----------|--------------------------|----------------|-----------|------------------------------------|----------------|-----------|
|                                  | β*    | 95% CI         | p Value** | Further adjusted for FAC |                |           | Further adjusted for dietary fibre |                |           |
| Mental component score           | -     |                |           | 1-22                     |                | 12.4.4    | -                                  |                |           |
| Mediterranean diet               | 0.33  | 0.18 to 0.49   | < 0.0001  | 0.08                     | -0.09 to 0.25  | 0.35      | 0.13                               | -0.04 to 0.29  | 0.13      |
| Italian Mediterranean index      | 0.36  | 0.20 to 0.51   | < 0.0001  | 0.03                     | -0.14 to 0.22  | 0.67      | 0.15                               | -0.01 to 0.32  | 0.07      |
| Olive oil and vegetables pattern | 0.50  | 0.34 to 0.65   | < 0.0001  | 0.19                     | -0.003 to 0.38 | 0.05      | 0.32                               | 0.15 to 0.50   | 0.0004    |
| Meat and pasta pattern           | 0.07  | -0.10 to 0.24  | 0.44      | 0.05                     | -0.12 to 0.21  | 0.59      | 0.14                               | -0.03 to 0.31  | 0.11      |
| Eggs and sweets pattern          | -0.33 | -0.52 to -0.14 | 0.001     | -0.18                    | -0.39 to 0.01  | 0.06      | -0.16                              | -0.36 to 0.04  | 0.11      |
| Physical component score         |       |                |           |                          |                |           |                                    |                |           |
| Mediterranean diet               | 0.15  | 0.06 to 0.24   | 0.001     | 0.13                     | 0.03 to 0.21   | 0.01      | 0.16                               | 0.07 to 0.26   | 0.001     |
| Italian Mediterranean index      | 0.08  | -0.003 to 0.16 | 0.06      | 0.06                     | -0.04 to 0.15  | 0.26      | 0.08                               | -0.01 to 0.17  | 0.09      |
| Olive oil and vegetables pattern | 0.15  | 0.06 to 0.24   | 0.001     | 0.15                     | 0.04 to 0.26   | 0.01      | 0.17                               | 0.06 to 0.27   | 0.0010    |
| Meat and pasta pattern           | -0.11 | -0.20 to -0.02 | 0.02      | -0.12                    | -0.22 to -0.03 | 0.01      | -0.11                              | -0.20 to -0.01 | 0.03      |
| Eggs and sweets pattern          | -0.02 | -0.13 to 0.08  | 0.71      | 0.004                    | -0.11 to 0.12  | 0.94      | -0.01                              | -0.12 to 0.10  | 0.90      |


Table 2 Multivariate regression coefficients (95% CI) for the association of Mediterranean diet scores or other dietary patterns with mental and physical component scores and further adjustment for food antioxidant content (FAC) or dietary fibre

\*Regression coefficients represent the variation in mental or physical component scores for a one standard deviation change in MDS, IMI or dietary patterns. \*\*p for trend values obtained from fully adjusted model for age, sex, BMI, total energy intake, total physical activity, education, income, total socioeconomic status, smoking, diabetes, hypertension, hypercholesterolemia.

"**Conslusions:** Adherence to an MD pattern is associated with better HRQL. The association is stronger with mental health than with physical health. Dietary total antioxidant and fibre content independently explain this relationship".

Dietary patterns – Mediterranean diet & Gut Microbiome "ecosystem support"





**INRAN, FAO** Double Pyramid

**Barilla Centre for Food Nutrition:** Double Pyramid: healthy food for people, sustainable food for the planet

http://www.barillacfn.com/en/position-paper/pp-doppia-piramide-alimentazione/



**Fondazione Edmund Mach** 



- •Thank you: Dr Paolo Formentini, Ordine dei Medici Reggio Emilia
- •Fulvio Mattivi, Duccio Cavalieri and Roberto Viola, FEM-IASMA
- •NN Group: Lorenza Conterno, Francesca Fava, Elena Franciosi, Carlotta de Filippo, Athanasios Koutsos, Ilaria Caraffa, Florencia Creppa, Andrea Machini
- •University of Reading, Glenn Gibson, Bob Rastall, Julie Lovegrove, Parveen Yaqoob, Christine Williams, Ian Rowland, Michael Connolly
- •Gary Frost, Imperial College London, Chris Gill, University of Ulster